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1‘Carol Davila’ University of Medicine and Pharmacy, Bucharest, Romania; 2‘Prof. Dr. C. C. Iliescu’ Institute of Cardiovascular Diseases, Şos. Fundeni 258, sector 2, 022328 Bucharest,
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Aims The contribution of left ventricular (LV) untwisting to LV suction and early-diastolic filling was previously demon-
strated, but this was not yet tested in patients with aortic stenosis (AS). We sought to assess the relationship
between LV untwisting and LV filling pressures in patients with severe AS and normal left ventricular ejection fraction
(LVEF) using speckle tracking echocardiography.

Methods
and results

Sixty-one consecutive patients (66+9 years) with severe AS, preserved LVEF (63+6%), and 40 normal subjects
(47+ 12 years) were prospectively enrolled. A comprehensive echocardiographic examination was performed
in all. LV rotation and twisting were assessed using speckle tracking echocardiography. Peak apical back rotation
rate, peak LV untwisting rate, and time intervals from QRS onset (ECG) to each of them were measured. Brain
natriuretic peptide (BNP) levels were determined in 30 patients. Patients with AS were older than normal subjects
(P , 0.001). LV mass, LA volume, LV filling pressures as well as peak apical back rotation rate and time to peak apical
back rotation rate were increased in patients (P , 0.05 for all). In patients with AS, both time to peak LV untwisting
rate and time to peak apical back rotation rate were significantly related to E/E0 ratio and to BNP levels (P , 0.04
for all).

Conclusion In patients with severe AS and preserved LVEF, there is a significant relationship between LV untwisting and LV filling
pressures, suggesting a role for impaired LV untwisting in the pathophysiology of diastolic dysfunction in this setting.
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Introduction
Aortic stenosis (AS) represents the most common form of valvular
heart disease.1 Once severe and symptomatic, surgical valve repla-
cement is warranted.2,3 Apart from stenosis severity, left ventricu-
lar (LV) dysfunction plays a critical role in symptom occurrence
and clinical decision.2,3 Understanding the pathways of progression
towards heart failure may bring important information for better

decision-making. Left ventricular ejection fraction, the currently
recommended parameter for assessing LV function in severe
AS,2,3 represents a rather crude measure of LV function in this
setting.4 More than half of patients with severe AS and congestive
heart failure have normal ejection fraction.5 Decline in tissue
Doppler-derived myocardial velocities4 and strain/strain rate6,7

have been reported in patients with AS and normal LV ejection
fraction, allowing an earlier identification of LV dysfunction. Left
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ventricular torsion, twisting, and untwisting have been shown to be
integral components of ventricular contractility, diastolic suction,
and filling both in normal subjects and in different cardiac diseases.8

In previous tagged magnetic resonance imaging studies, changes in
LV rotation parameters have been described in AS patients.9,10

However, these studies were particularly limited by the very
small number of patients examined. The effect of AS on LV
torsion mechanics has thus not been entirely evaluated. We
hypothesized that in patients with severe AS there will be signifi-
cant changes in both systolic twist and diastolic untwist, which
may be involved in the development/progression of LV dysfunc-
tion: (i) increased LV systolic twisting; (ii) delayed LV diastolic
untwisting; and (iii) increased LV filling pressures, in proportion
to LV untwist delay.

Two-dimensional (2D) speckle tracking echocardiography (STE)
is a new non-invasive imaging modality allowing assessment of LV
torsional dynamics. We therefore sought to examine the impact
of AS on LV rotation parameters by using 2D-STE and to deter-
mine how changes in LV torsion mechanics may affect LV systolic
and diastolic function.

Methods
We prospectively screened 167 consecutive patients with severe AS,
who were referred for the assessment of valve disease severity.
Severe AS was defined as an indexed aortic valve area (AVAi,
measured by the continuity equation) ,0.6 cm2/m2.3 We excluded
32 patients with more than mild aortic or mitral regurgitation, seven
patients with mitral stenosis/prosthesis, 12 patients with LV ejection
fraction ,50%, and 24 patients with coronary artery disease (by
history, echocardiography, and/or coronary angiography). After also
excluding 25 patients with poor acoustic window or technically unsui-
table for speckle tracking analysis and six patients with rhythm and
conduction disturbances, the remaining 61 patients with severe AS
constituted the final study group. A normal coronary angiography
was available in 35 of these 61 patients, as this was performed based
only on routine clinical grounds, at the discretion of the referring
physician.

Forty healthy volunteers served as a control group. They had no evi-
dence of heart disease by physical examination, 12-lead electrocardio-
gram, and echocardiography, and were taking no medication. All
subjects gave their informed consent to participate in the study, the pro-
tocol of which was approved by the Ethics Committee of ‘Prof. Dr. C. C.
Iliescu’ Institute of Cardiovascular Diseases, Bucharest, Romania.

Echocardiography
All subjects underwent 2D, conventional Doppler echocardiography
and STE. Images were obtained using a commercially available
cardiac ultrasound machine (Vivid 7 Dimension, GE Healthcare,
Horten, Norway) equipped with a 4S probe. Gray scale images were
obtained using second-harmonic imaging. Standard views and tech-
niques were used according to the American Society of Echocardiogra-
phy/European Association of Echocardiography guidelines.11 Left
ventricular volumes and LV ejection fraction were measured using
the modified Simpson’s rule from apical four- and two-chamber
views and were normalized to body surface area (BSA). LV mass
was calculated by the equation of Devereux.12 Continuous-wave
Doppler was used to measure the aortic transvalvular maximal vel-
ocities; peak and mean gradients were calculated using the simplified
Bernoulli equation. Aortic valve area was calculated using the

continuity equation.13 For systolic and diastolic function, peak systolic
(S) and peak early diastolic (E0) mitral annular velocities were obtained
by pulse-wave tissue Doppler imaging from the apical four-chamber
view using both the septal and the lateral sites. The average E0 was
used to calculate the ratio of peak early-diastolic transmitral flow vel-
ocity E to E0,14 in order to estimate LV filling pressures.

Left ventricular rotation parameters
Gray scale digital cine loops triggered to QRS complexes were
acquired from two LV short-axis planes at the basal and apical levels
for rotation and torsion analysis. Care was taken to ensure that the
basal short-axis plane contained the mitral valve. The apical plane
was acquired distally to the papillary muscles and transducer position
was optimized to ensure a proper, circular short-axis cut, as previously
described.15 At each plane, three consecutive cardiac cycles were
acquired during breath-hold at a frame rate of 70–100 frames/s,
without using dual focus, and stored in hard disk for off-line analysis
using commercially available software (EchoPAC PC 08, GE Health-
care). The off-line analysis was performed by a single observer,
blinded to clinical data. The region of interest (ROI) of the LV was
set at the endocardial margin to the epicardial margin, thus delineating
the entire circumference. The ROI width was adjusted as needed to fit
the wall thickness, as previously described.16,17 The tracking quality of
each segment was indicated by the software, and segments with insuf-
ficient tracking quality were excluded.16 Averaged apical and basal
rotation data were used for calculation of LV twist and torsion. LV
twist was calculated as the net difference of LV rotation at isochronal
time points between the apical and basal short-axis planes. Whenever
possible, cycles with identical or very similar heart rates were selected
for measuring rotation at the apical and at the basal levels. This was the
case for the majority of patients, as all were in sinus rhythm and the
short-axis views at the apical and at the basal levels were recorded
immediately one after another. Moreover, the software used does
not allow calculation of LV twist by this method if the difference in
heart rate between cardiac cycles used to measure apical and basal
rotation is significant. The mean heart rate of the recordings at both
basal and apical level in our study was 67+ 10 beats per minute. LV
torsion was defined as LV twist divided by end-diastolic LV longitudinal
length measured in the apical four-chamber view. The following
measurements were performed: peak basal and apical rotation, peak
LV twist, peak LV twist rate, peak apical rotation rate, peak basal
rotation rate, peak apical back rotation rate and time to it, peak LV
untwisting rate, and time to it (Figure 1). Time intervals were normal-
ized to the percentage duration of systole and diastole separately as
previously described (i.e. at end systole, t was 100%, at end diastole,
t was 200%).18 For diastole, the time of each frame was expressed
as a percentage of the duration of diastole and added to 100, such
that the diastolic period was defined from 100 to 200%. The end of
systole was defined by the aortic valve closure signal on Doppler
interrogation of the LV outflow tract and diastole was defined as the
remainder of the cardiac cycle.

Plasma BNP
Brain natriuretic peptide (BNP) levels were determined at the discre-
tion of the referring physician using commercially available kits based
on microparticle enzyme immunoassay (AxSYM System, Abbott Lab-
oratories). Venous blood samples were taken from an antecubital
vein at the time of the echocardiogram into appropriate vacutainer
test tubes, according to the manufacturer’s instructions.
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Statistical analysis
Measurements are presented as mean+ SD. Variables were compared
using Student’s t-test, ANOVA, or x2 test when appropriate. Relation-
ships between different parameters were assessed by correlation
analysis (Pearson’s method). Skewed data such as BNP values were
logarithmically transformed [ln(BNP)] and ln(BNP) values were used
in correlation and regression analyses. All statistical analyses were per-
formed using SPSS 14.0 software for Windows (SPSS, Inc., Chicago, Illi-
nois). A two-sided P-value of 0.05 was considered significant.

Measurement variability was assessed for peak apical and peak basal
rotation as well as for time intervals, in a randomly selected group
of 15 patients with AS. For interobserver variability, measurements
were carried out by a second operator on previously acquired
images, but not necessarily the same heart beats. For intraobserver
variability, two sets of measurements were carried out by the same
operator, one month apart. Variability was calculated as the absolute
differences between two measurements divided by the mean of the
two measurements.

Figure 1 Upper panel: measurement of time to peak left ventricular untwisting rate from QRS onset to the first diastolic negative peak after
aortic valve closure (vertical green dotted line) on the left ventricular torsion rate curve (white). Lower panel: measurement of time to peak
apical back rotation rate from QRS onset to the first diastolic negative peak after aortic valve closure on the rotation rate profile of the apex.
AVC, aortic valve closure.
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Results

Study participants
Thirteen AS patients were in NYHA class I, six of them presenting
for angina or syncope, the rest being asymptomatic. Thirty-seven
patients were in NYHA class II, and 11 in class III. BNP levels
were available in 30 patients with AS and ranged from 36 to
878 pg/mL (median: 202.7 pg/mL; interquartile range 99–326 pg/
mL). When compared with controls, AS patients were older
(66+9 vs 47+ 12 years, P , 0.001) and more often of male
gender (67 vs 33%, P , 0.001). Body surface area (1.83+ 0.21
vs 1.81+0.18 m2) and resting heart rate (66+ 12 vs 68+
9 b.p.m.) were similar in both groups (P . 0.3 for both).

Left ventricular systolic and diastolic
function
In Table 1, the echocardiographic characteristics of the study
population are depicted. Left atrial volume and LV mass were
increased in AS patients when compared with controls. Although
LV ejection fraction was similar in both groups, peak systolic
velocity—a parameter of LV longitudinal myocardial function—
was reduced in AS (P , 0.001). Parameters of LV diastolic func-
tion were often impaired in AS patients. The E-wave velocity
deceleration time and the E/E0 ratio were increased whereas
the E0 was significantly reduced in AS patients (P , 0.001,
respectively for all).

Left ventricular rotation parameters
Left ventricular apical rotation, torsion, and twist parameters were
increased in AS patients (Table 2). LV untwisting rate and time to
peak LV untwisting rate were similar in both groups. There were
no significant differences in LV rotation parameters between
asymptomatic and symptomatic patients with AS. In AS patients,
LV apical back rotation rate was increased, while time to peak
apical back rotation rate was delayed when compared with
controls.

Intraobserver variability for measuring LV twist was 6.8+ 4.9%,
for time to peak apical back rotation rate was 2.6+ 2.9%, and for
time to peak LV untwisting rate was 3.9+5.5%. Interobserver
variability for the same parameters was 8.5+7.8, 2.1+3.4, and
3.0+ 5.4%, respectively.

Relations of left ventricular rotation
parameters to conventional
echocardiographic parameters of left
ventricular function in patients with
aortic stenosis
Left ventricular torsion correlated to LV volumes (r ¼ 20.38, P ¼
0.003 for indexed LV end-diastolic volume and r ¼ 20.31, P ¼
0.019 for indexed LV end-systolic volume), while there was no sig-
nificant relationship between LV rotation parameters and LV ejec-
tion fraction. Peak LV twist rate had a direct correlation with peak
systolic myocardial velocities (r ¼ 0.34, P ¼ 0.009 for peak septal S
and r ¼ 0.29, P ¼ 0.04 for peak lateral S).

Among diastolic function parameters, E/E0 ratio was significantly
correlated to time to peak apical back rotation rate and time to
peak LV untwisting rate (Figure 2). Both time to peak apical back

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Echocardiographic variables in control
subjects and patients with aortic stenosis

Controls (n 5 40) AS (n 5 61) P-value

LVEDDi (mm/m2) 27+3 27+3 0.7

LVESDi (mm/m2) 16+2 16+3 0.9

LVEDVi (mL/m2) 51+8 46+17 0.07

LVESVi (mL/m2) 19+4 18+8 0.1

LV mass (g/m2) 89+14 139+32 ,0.001

LAVi (mL/m2) 33+8 41+13 ,0.001

LVFS (%) 36+13 40+9 0.09

LVEF (%) 62+3 63+6 0.2

E (cm/s) 76+15 75+25 0.8

EDT (ms) 184+50 236+64 ,0.001

IVRT (ms) 55+17 58+21 0.4

S septal (cm/s) 7.4+1.1 5.9+1.2 ,0.001

S lateral (cm/s) 9.6+2.5 6.5+1.5 ,0.001

E0 average (cm/s) 11.9+2.5 5.6+1.3 ,0.001

E/E0 average 6.6+1.4 13.6+4.5 ,0.001

AVAi (cm2/m2) — 0.39+0.11 —

LVEDDi, left ventricular end-diastolic diameter indexed to body surface area
(BSA); LVESDi, left ventricular end-systolic diameter indexed to BSA; LVEDVi, left
ventricular end-diastolic volume indexed to BSA; LVESVi, left ventricular
end-systolic volume indexed to BSA; LAVi, left atrial volume indexed to BSA; LVFS,
left ventricular fractional shortening; LVEF, left ventricular ejection fraction; EDT,
E-wave deceleration time; IVRT, isovolumic relaxation time; AVAi, aortic valve area
indexed to BSA.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Left ventricular torsion-derived parameters

Controls
(n 5 40)

AS
(n 5 61)

P-value

LV peak apical rotation
(8)

15.7+5.9 21.0+7.6 ,0.001

LV peak basal rotation
(8)

26.2+2.9 26.7+3.2 0.4

LV twist (8) 20.8+6.8 26.5+9.1 0.001

LV twist rate (8/s) 118+35 137+55 0.006

LV peak systolic torsion
(8/cm)

2.7+0.9 3.4+1.3 0.002

LV peak untwisting rate
(8/s)

2143+48 2158+59 0.18

Time to peak LV
untwisting rate

115+7 115+6 0.8

LV peak apical back
rotation rate (8/s)

293+47 2115+55 0.04

Time to peak apical
back rotation rate

113+8 117+7 0.004

LV peak basal back
rotation rate (8/s)

64+20 70+23 0.18

Time to peak basal back
rotation rate

113+6 113+7 0.9
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rotation rate and time to peak LV untwisting rate were also corre-
lated to indexed LA volume (r ¼ 0.39, P ¼ 0.002 and r ¼ 0.38, P ¼
0.004, respectively) and to BNP levels (Figure 3).

We entered the correlates of time to peak apical back rotation
rate and time to peak LV untwisting rate, respectively, in multi-
variate linear regression analysis (found by univariate analysis at a
significance level of P , 0.05): LAVi, ln(BNP), E/E0 ratio. We
found that only E/E0 ratio was independently related to each
time interval (P , 0.01).

Discussion
In the present study, we found that the chronically increased after
load resulting from AS leads to progressive alterations in LV systo-
lic and diastolic torsional mechanics. To the best of our knowledge,

this is the first study to report a significant relationship between LV
untwisting and LV filling pressures in patients with severe AS and
preserved LV ejection fraction.

Left ventricular rotation parameters in
aortic stenosis
In AS, the increased pressure overload results in several structural,
haemodynamic, and functional changes. In our study, all patients
had severe AS and, despite preserved LV ejection fraction, they
presented an enlarged left atrium, decreased peak systolic myocar-
dial velocities, and increased E/E0 ratio when compared with con-
trols. In addition, we found that LV rotation parameters were
altered in AS patients. LV apical rotation and torsion were

Figure 2 Both time to peak left ventricular untwisting rate (left panel) and time to peak apical back rotation rate (right panel) have a direct
correlation to E/E0 ratio: the longer the time intervals, the higher the estimated left ventricular filling pressures.

Figure 3 Time to peak left ventricular untwisting rate (left panel) and time to peak apical back rotation rate (right panel) were both directly
correlated to BNP levels.
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increased, while peak apical back rotation rate was increased and
delayed, compared with controls.

Systolic left ventricular torsional
mechanics in aortic stenosis
Left ventricular twist is caused by the dynamic interaction between
oppositely oriented subepicardial and subendocardial myocardial
fibre helices and has an important role in LV ejection.19,20 Suben-
docardial ischaemia has long been recognized as an early sign of
myocardial damage from pressure overload caused by AS.21 As
the direction of LV twist is governed by the subepicardial
fibres,22 subendocardial ischaemia may diminish the counteraction
of subendocardial myofibres and alter the systolic LV rotation. In
the present study, we found that LV apical systolic rotation and
global LV twist were increased in AS patients. A possible expla-
nation for the lack of increased basal rotation in the current
study may be the greater increase in wall stress in the basal walls
which might prevent basal rotation to increase. Increased LV
twist and rotation in AS patients has recently been shown in
tagged MRI studies.9,10 However, MRI has limited clinical
availability, low temporal resolution, and long acquisition time.
Two-dimensional STE is relatively a novel technique that provides
accurate information regarding myocardial deformation and LV
torsional mechanics16,23 and overcomes these limitations.

Diastolic left ventricular torsional
mechanics in aortic stenosis
In the present study, peak apical back rotation was increased and
delayed in AS patients, while the basal back rotation was relatively
conserved. A significant prolongation of apical back rotation into
the filling phase of the LV has also been observed in MRI studies
concerning a limited number of patients with various degrees of
AS.24 In normal subjects, over 40% of LV untwisting is completed
in the first part of diastole.25 The untwisting process generates a
negative intraventricular pressure gradient and contributes to LV
suction and enhanced early-diastolic filling.25 This early, rapid LV
untwisting process is supported by active (potential energy
stored from the active systolic twist) and passive (potential
energy transformed into kinetic energy) mechanisms. In AS, the
subendocardial ischaemia may alter the active part of diastolic
untwisting, and the resulting relaxation abnormality, which is fre-
quent in AS, may in turn further compromise the LV untwisting
and filling. This vicious circle may ultimately lead to significant LV
dysfunction and symptoms development.

Relation between left ventricular
untwisting and filling pressures
In the present study, we showed, for the first time, a direct, signifi-
cant relationship between LV untwisting and filling pressures, as
assessed by the E/E0 ratio and BNP levels in patients with severe
AS. Apical back rotation, but not LV untwisting, was significantly
delayed in AS patients. However, a direct relationship was found
between both time to peak LV untwisting rate and time to peak
apical back rotation rate and LV filling pressures: the longer the
time to peak untwisting rate, the higher the filling pressures.

In normal subjects, a rapid diastolic apical back rotation causes a
fast decline in LV pressure playing an important role in the suction
of blood into the ventricle, promoting its filling at low pressures.25

Therefore, the finding of a direct relationship between delayed
apical back rotation and increased LV filling pressures in patients
with AS is not surprising and clinically meaningful.

In patients with AS, exertional dyspnoea is closely associated
with elevated LV filling pressures,26,27 and abnormal LV filling has
been reported in at least half of the patients with normal systolic
ejection performance and in all patients with depressed systolic
function.26 Increased LV filling pressure represents the common
feature for advanced heart failure regardless of underlying aetiol-
ogy, and has well-known clinical and prognostic implications.28,29

The extent of diastolic dysfunction in patients with AS indepen-
dently predicts late mortality after aortic valve replacement.30

The E/E0 ratio provides an accurate estimate of LV filling
pressures at rest14,31 and during exercise32 in several cardiac con-
ditions with both preserved and reduced LV ejection fraction. An
elevated E/E0 ratio indicates a poor prognosis in various cardiac
conditions33– 37 and was found to be a predictor of mortality
and need for aortic valve replacement in a small cohort of patients
with different degrees of AS severity.38 The usefulness of the E/E0

ratio as an estimate of LV filling pressures in patients with moder-
ate to severe AS was validated against invasive measurements
derived from cardiac catheterization.4,39 In these patients, an
E/E0 septal ratio �13 identified an LV end-diastolic pressure
.15 mmHg, with a sensitivity of 93% and a specificity of 88%.4

Similarly, plasma levels of natriuretic peptides are related to
disease severity40,41 and symptomatic status42 in patients with
AS, and it was suggested that they could be used to monitor
disease progression. Moreover, they provide additional prognostic
information beyond clinical and echocardiographic data.43

Clinical implications
As delayed LV untwisting may partially explain the occurrence of
diastolic dysfunction in patients with AS and it is related to par-
ameters with confirmed prognostic value (E/E0 ratio and BNP
levels), it would be interesting to test whether changes in LV tor-
sional dynamics have a prognostic role and whether interventions
such as aortic valve replacement would lead to an improvement in
LV untwisting. It would also be interesting to assess the effect of
exercise on LV torsion and untwisting in asymptomatic patients
with AS. This has been examined in healthy individuals where
enhanced untwisting contributes to the augmentation of LV filling
during exertion.25 In patients with hypertrophic cardiomyopathy,
however, this exercise response is blunted,25 suggesting that the
effect of exercise on untwisting may be of relevance to the devel-
opment of cardiac dysfunction in different clinical settings. Proof of
prognostic role or ability to identify incipient LV dysfunction or
lack of functional reserve may help clinical decisions, turning
these parameters into useful clinical tools.

Study limitations
Lack of an age-matched control group is a main limitation of our
study. However, this relates only to the comparison between
patients with AS and normal subjects, while the main finding of
the study (the correlations between LV untwisting parameters
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and filling pressures in AS patients) is unrelated to the age differ-
ence between groups. Another limitation of our study is the lack
of a sizeable subgroup of asymptomatic patients with AS to test
differences between symptomatic and asymptomatic patients.
This reflects the population of AS patients usually seen in a tertiary
referral centre, including mainly symptomatic patients referred for
aortic valve replacement.

Left ventricular filling pressures were non-invasively estimated
and not directly measured. However, we used two parameters
already validated in this setting, reaching concordant results,
while crossing the stenotic aortic valve to measure LV pressure
had no clinical indication and could be considered unethical in
this setting.44

Coronary artery disease was not excluded by coronary angio-
graphy in all patients in our study group, as this was performed
only in patients undergoing aortic valve replacement. However,
we excluded all patients with LV wall motion anomalies and all
patients with a confirmed history of acute coronary syndrome.

Conclusions
In patients with severe AS and preserved LV ejection fraction,
there is a significant relationship between LV untwisting and LV
filling pressures: the longer the time to peak untwisting rate, the
higher the filling pressures. These results suggest a potential role
for impaired LV untwisting in the development and progression
of diastolic dysfunction in patients with AS.
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